
www.manaraa.com

Data Parallel Programming for the Emerging Web

Richard L. Hudson, Tatiana Shpeisman, Adam Welc, Ali-Reza Adl-Tabatabai

Intel Labs

Abstract
JavaScript is the safe and secure language used to deliver

browser based client side applications. It is typically the

first language a person learns and for a large number of

productivity programmers working on web based client

applications, the only language they use. There is

tremendous pressure on these programmers to make their

web based applications more visually appealing and

engaging. To do this they must leverage the available

hardware resources which include multiple cores and

graphics processing units.

One position for how to achieve this is to abstract the

hardware using languages such OpenCL. This position

requires intimate knowledge of the hardware but provides

ultimate control of the hardware and optimal performance

out of the hardware. The cost is that the programmer must

work in two programming models, the high level

JavaScript programming model suitable for the

productivity programmer and the low level hardware

model suitable for the performance programmer. Our

position is that the productivity programmer should be

given a single programming model, the JavaScript model,

to work in and that it should be able to utilize the

available hardware parallelism without the programmer

having to drop into an unfamiliar second programming

model.

1. Introduction
The next round of innovative applications will require

more compute power as it always has. The hardware

vendors are responding, not with faster CPUs, but with

multi-cores and many-cores, often combined with GPUs

and other types of accelerators.

In order to utilize capabilities of these new architectures,

the programming language community has responded

with new ways of expressing parallelism. All the

traditional application programming languages (C, C++,

Java, C#, etc.) are increasing support for parallel

computations in multiple different ways – through

extensions (often supporting different styles of parallelism

– data parallelism, task parallelism, distributed

parallelism, etc.), libraries, virtual execution

environments, automated parallelization tools, parallel

programming patterns, and so forth. Surprisingly, while

these approaches have been at least partially successful in

their own application domains, their adoption into the

web-oriented programming environments and scripting

programming languages, used by a larger and larger

number of developers, has failed almost completely.

Acceptance of the web browser as a dominant application

delivery system is growing every day. Web applications

are becoming richer and more complicated with each

passing month. Recent developments such as HTML5 and

WebGL have added new features, such as video, audio,

and 2D and 3D graphics. These features provide ample

opportunities for parallel client-side applications. Image

and video processing, physics, financial applications

could utilize client hardware resources to enable rich

immersive visual experience for the user. Support for

parallelism in the most popular client-side web

development language – JavaScript – remains very

limited. The need for task parallelism has been, at least

partially, addressed by web workers – effectively, coarse

grain threads that communicate via asynchronous

message passing. Yet, support for data parallel

programming in JavaScript is still non-existent. Data-

parallel algorithms are easy to scale and are a good match

to graphics and vector hardware. It is quite astonishing to

us that one of the most popular programming languages

has been neglected with respect to data parallelism. We

hope to change this situation by providing support for

data parallelism directly in JavaScript. The goal is not to

achieve parity by duplicating the solutions available for

traditional programming languages. Instead it is to

embrace and extend JavaScript’s programming model so

that existing JavaScript programmers can leverage the

power of modern hardware in new applications.

2. Data parallelism
We believe that JavaScript must provide a programming

model that executes data parallel constructs on modern

data parallel hardware while maintaining the productivity

advantages of a dynamic scripting language.

Today, the main programming approach to data

parallelism is to match GPU architecture with low-level

programming models such as CUDA[3] and OpenCL[2].

With recent emergence of WebGL[7], it is logical to ask

if WebCL – an adaptation of OpenCL for the browser

environment – is the next step. While plausible on the

surface, we believe that straightforward adaptation of

OpenCL for the browser is unlikely to be accepted by the

JavaScript community.

www.manaraa.com

OpenCL provides a bifurcated programming model – a

program consists of the host code executing on CPU and

the device code executing on a “device” – GPU, CPU, co-

processor (e.g., Cell), or some other accelerator. The host

and device code are written in two distinct programming

languages and communicate via the set of OpenCL APIs.

While host program can be written in any programming

language supported by the OpenCL API bindings, the

device program (a kernel) is written in OpenCL C – a

variation of C99 that exposes low-level details of the

GPU architecture to the programmer. These details

include, for example, a three-level memory hierarchy -

private per-thread memory, local memory shared between

threads organized in a thread group, and global memory

shared by all threads. The programmer is also responsible

for the explicit mapping and unmapping of device

memory buffers to the CPU memory and synchronization

via barriers. To write OpenCL code, a programmer should

be aware of all these details; moreover, to achieve optimal

performance the size of the work group must correctly

match both the application and the target device’s

architecture.

It is hard for us to imagine how this low-level

programming model could be adapted to JavaScript – a

safe, object-oriented, dynamically typed programming

language whose primary developer base consists of

application programmers and web content developers.

First, the JavaScript community already rejected the

relatively well-understood lock-based shared memory

programming model as too complicated and error-prone.

Instead it chose to support task parallelism via

asynchronous message passing. OpenCL makes the

problems of data races and non-deterministic execution

only worse (locks might be bad, but they are better than

thread group barriers). Second, OpenCL forces

programmers to think in terms of two programming

models, leading to classical software engineering

problems – to modify an OpenCL program one needs to

modify the host logic, the device code, and the glue layer

between the two. Finally, the main goal of OpenCL is to

achieve optimal performance on a particular device,

which contradicts the nature of web applications which

are designed to run on a variety of clients, ranging from

the powerful desktops with top-of-the line GPUs to

mobile phones. It is unrealistic to expect web developers

to tune the application performance for every possible

combination of CPU and GPU found on the client

hardware.

The roots of the OpenCL approach to parallel

programming can be found in decades of high

performance computing focused on extracting

performance from the hardware and not productivity from

the programmer. This approach was magnified by the

nature of the hardware business where purchasing

decisions are made based on results from benchmarks that

are highly tuned by the hardware vendors. In addition, the

high cost of parallel hardware encouraged customers to go

through extra hoops to achieve maximum possible

utilization from their investment.

This environment has made it difficult to successfully

champion programmer productivity. Fortunately, the

times are changing. As parallel hardware becomes a

commodity, programmer productivity emerges as the

more expensive resource and, consequently, must be

favored over performance by programming models. We,

thus, believe that data-parallel programming model for

JavaScript should draw inspiration from high-level

programming models such as NESL[8] and Google’s

map-reduce[9], rather than OpenCL.

The common perception is that writing parallel programs

is hard. Perhaps this notion comes from confusion

between writing parallel programs and writing efficient

parallel programs. Figure 1 shows a simple example

(adding one to all elements of an array) written two ways

– a traditional sequential loop-based code (Figure 1a) and

a parallel style code using the JavaScript Array map

method (Figure 1b) with a kernel function. The code in

Figure 1b concisely captures the parallel semantics for

both the programmer and the compiler while also being

shorter, clearer, and in concert with the JavaScript

programming model. Besides map, JavaScript also

provides many high-level array operations such as reduce

and filter that appear to be parallel. Unfortunately, these

operations are defined to have sequential semantics. A

callback to the array operation kernel function can modify

external state including the array elements, the global

state, and the free variables from a closure. If the

callbacks were done in parallel this would be non-

deterministic. To avoid this JavaScript enforces

determinism by imposing sequential semantics on array

methods such as map. We propose providing a new data

structure - a parallel array - along with methods that

achieves determinism through functional (side effect free)

 var b = Array(a.length);

 for (i=0; i < a.length; i++) b = a.map(function(x){return x+1;}}

 b[i] = a[i] + 1

a) Sequential version b) Parallel version

 Figure 1. Simple JavaScript program

www.manaraa.com

semantics. Such semantics are intuitively familiar the

JavaScript programmer so the acceptance bar should not

be high.

Compiling arbitrary JavaScript kernels for efficient

execution on vector and graphics hardware is a non-trivial

problem which we do not expect to be solved overnight.

We would have to develop compiler and run-time

techniques to solve a large number of challenging

technical problems such as support for pointer-based data

structures, finding optimal data layout, minimizing

transitions between CPU and GPU execution, handling

code divergence, supporting dynamic types etc. The

existing JavaScript story, however, teaches us that when

programmability goes first, performance follows. The

existing techniques for efficient JavaScript execution such

as type splitting[1] and trace-based compilation[3] have

improved the JavaScript performance by the order of

magnitude, and there is no reason why the same will not

happen for parallel execution. Meanwhile, performance-

conscious programmers will learn to write in patterns that

can be parallelized by today compilers. Tools will be

developed to detect missed performance opportunity.

These initial modest performance gains will be the

improvement that will drive programmers to create

application that take advantage of data parallelism. In turn

the new applications will drive the development of better

compilers and tools.

3. Conclusion
Our vision of the future is a web based ecosystem where

the browser is the platform of choice and JavaScript

continues to be the implementation language of choice.

For this future to materialize we need to bring data

parallelism to JavaScript and in turn enable future

innovations. Our position is that data parallelism can be

achieved by starting with a parallel array type and a few

simple constructs that can leverage GPUs and other

accelerators. If the programmer writes code that is correct

but uses constructs that cannot be parallelized it is the

software development environment’s job to assist the

programmer but the code running in the browser is

required to still run correctly and deterministically.

4. References
[1] Chambers, C. and Ungar, D. Iterative Type Analysis

and Extended Message Splitting: Optimizing

Dynamically-Typed Object-Oriented Programs.

Proceedings of the SIGPLAN '90 Conference on

Programming Language Design and Implementation, pp.

150-164, White Plains, NY, June, 1990.

[2] Khronos OpenCL Working Group, The OpenCL

Specification.

http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

 [3] Gal A.; Eich, B.; Shaver, M.; Anderson, D; Mandelin,

D.; Haghighat, M. R.; Kaplan, B.; Hoare, G.; Zbarsky, B.;

Orendorff, J.; Ruderman, J.; Smith, E. W.; Reitmaier, R.;

Bebenita, M.; Chang, M. and Franz, M. Trace-based just-

in-time type specialization for dynamic languages. In

Proceedings of the Conference on Programming

Language Design and Implementation, pages 465–478,

2009.

[3] NVIDA corporation, CUDA programming guide, June

2008.

[4] Hillis, W. D. and Steele, G. L. 1986. Data parallel

algorithms. Commun. ACM 29, 12 (Dec. 1986), 1170-

1183. DOI= http://doi.acm.org/10.1145/7902.7903

 [6] Hickson, I. (editor), Web Workers Draft

Recommendation — 10 September 2010 available from

http://whatwg.org/ww

[7] Marrin, C. (Editor), WebGL Specification Working

Draft 10 June 2010 available from https://khronos.org/

[8] Blelloch, G. E. 1993 Nesl: a Nested Data-Parallel

Language (Version 2.6). Technical Report. UMI Order

Number: CS-93-129., Carnegie Mellon University.

[9] Dean, D and Ghemawat, S. MapReduce: Simplified

data processing on large clusters. In Proceedings of the

6th Symposium on Operating System Design and

Implementation (OSDI 2004), pages 137–150, San

Francisco, California.

http://www.cs.washington.edu/people/faculty/chambers.html
http://doi.acm.org/10.1145/7902.7903
http://www.whatwg.org/specs/web-workers/current-work/
mailto:cmarrin@apple.com
https://khronos.org/

